Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pathol Clin Res ; 10(1): e352, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38117182

RESUMO

Tuft cells are chemosensory cells associated with luminal homeostasis, immune response, and tumorigenesis in the gastrointestinal tract. We aimed to elucidate alterations in tuft cell populations during gastric atrophy and tumorigenesis in humans with correlative comparison to relevant mouse models. Tuft cell distribution was determined in human stomachs from organ donors and in gastric pathologies including Ménétrier's disease, Helicobacter pylori gastritis, intestinal metaplasia (IM), and gastric tumors. Tuft cell populations were examined in Lrig1-KrasG12D , Mist1-KrasG12D , and MT-TGFα mice. Tuft cells were evenly distributed throughout the entire normal human stomach, primarily concentrated in the isthmal region in the fundus. Ménétrier's disease stomach showed increased tuft cells. Similarly, Lrig1-Kras mice and mice overexpressing TGFα showed marked foveolar hyperplasia and expanded tuft cell populations. Human stomach with IM or dysplasia also showed increased tuft cell numbers. Similarly, Mist1-Kras mice had increased numbers of tuft cells during metaplasia and dysplasia development. In human gastric cancers, tuft cells were rarely observed, but showed positive associations with well-differentiated lesions. In mouse gastric cancer xenografts, tuft cells were restricted to dysplastic well-differentiated mucinous cysts and were lost in less differentiated cancers. Taken together, tuft cell populations increased in atrophic human gastric pathologies, metaplasia, and dysplasia, but were decreased in gastric cancers. Similar findings were observed in mouse models, suggesting that, while tuft cells are associated with precancerous pathologies, their loss is most associated with the progression to invasive cancer.


Assuntos
Gastrite Hipertrófica , Neoplasias Gástricas , Humanos , Camundongos , Animais , Hiperplasia/patologia , Mucosa Gástrica/patologia , Gastrite Hipertrófica/patologia , Neoplasias Gástricas/patologia , Proteínas Proto-Oncogênicas p21(ras) , 60419 , Fator de Crescimento Transformador alfa , Carcinogênese , Metaplasia/patologia
3.
J Clin Invest ; 133(20)2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37643022

RESUMO

Microvillus inclusion disease (MVID), caused by loss-of-function mutations in the motor protein myosin Vb (MYO5B), is a severe infantile disease characterized by diarrhea, malabsorption, and acid/base instability, requiring intensive parenteral support for nutritional and fluid management. Human patient-derived enteroids represent a model for investigation of monogenic epithelial disorders but are a rare resource from MVID patients. We developed human enteroids with different loss-of function MYO5B variants and showed that they recapitulated the structural changes found in native MVID enterocytes. Multiplex immunofluorescence imaging of patient duodenal tissues revealed patient-specific changes in localization of brush border transporters. Functional analysis of electrolyte transport revealed profound loss of Na+/H+ exchange (NHE) activity in MVID patient enteroids with near-normal chloride secretion. The chloride channel-blocking antidiarrheal drug crofelemer dose-dependently inhibited agonist-mediated fluid secretion. MVID enteroids exhibited altered differentiation and maturation versus healthy enteroids. γ-Secretase inhibition with DAPT recovered apical brush border structure and functional Na+/H+ exchange activity in MVID enteroids. Transcriptomic analysis revealed potential pathways involved in the rescue of MVID cells including serum/glucocorticoid-regulated kinase 2 (SGK2) and NHE regulatory factor 3 (NHERF3). These results demonstrate the utility of patient-derived enteroids for developing therapeutic approaches to MVID.


Assuntos
Síndromes de Malabsorção , Mucolipidoses , Miosina Tipo V , Humanos , Microvilosidades/genética , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Enterócitos/metabolismo , Síndromes de Malabsorção/genética , Síndromes de Malabsorção/terapia , Síndromes de Malabsorção/metabolismo , Mucolipidoses/genética , Mucolipidoses/terapia , Mucolipidoses/metabolismo
4.
Gut Microbes ; 15(1): 2225841, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37350393

RESUMO

BACKGROUND & AIM: Clostridioides difficile infection (CDI) is the leading cause of hospital-acquired diarrhea and pseudomembranous colitis. Two protein toxins, TcdA and TcdB, produced by C. difficile are the major determinants of disease. However, the pathophysiological causes of diarrhea during CDI are not well understood. Here, we investigated the effects of C. difficile toxins on paracellular permeability and apical ion transporters in the context of an acute physiological infection. METHODS: We studied intestinal permeability and apical membrane transporters in female C57BL/6J mice. Üssing chambers were used to measure paracellular permeability and ion transporter function across the intestinal tract. Infected intestinal tissues were analyzed by immunofluorescence microscopy and RNA-sequencing to uncover mechanisms of transporter dysregulation. RESULTS: Intestinal permeability was increased through the size-selective leak pathway in vivo during acute CDI in a 2-day-post infection model. Chloride secretory activity was reduced in the cecum and distal colon during infection by decreased CaCC and CFTR function, respectively. SGLT1 activity was significantly reduced in the cecum and colon, accompanied by ablated SGLT1 expression in colonocytes and increased luminal glucose concentrations. SGLT1 and DRA expression was ablated by either TcdA or TcdB during acute infection, but NHE3 was decreased in a TcdB-dependent manner. The localization of key proteins that link filamentous actin to the ion transporters in the apical plasma membrane was unchanged. However, Sglt1, Nhe3, and Dra were drastically reduced at the transcript level, implicating downregulation of ion transporters in the mechanism of diarrhea during CDI. CONCLUSIONS: CDI increases intestinal permeability and decreases apical abundance of NHE3, SGLT1, and DRA. This combination likely leads to dysfunctional water and solute absorption in the large bowel, causing osmotic diarrhea. These findings provide insights into the pathophysiological mechanisms underlying diarrhea and may open novel avenues for attenuating CDI-associated diarrhea.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Animais , Feminino , Camundongos , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Diarreia , Regulação para Baixo , Camundongos Endogâmicos C57BL , Permeabilidade , Trocador 3 de Sódio-Hidrogênio/genética , Trocador 3 de Sódio-Hidrogênio/metabolismo
5.
bioRxiv ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945389

RESUMO

A dense glycocalyx, composed of the megaDalton-sized membrane mucin MUC17, coats the microvilli in the apical brush border of transporting intestinal epithelial cells, called enterocytes. The establishment of the MUC17-based glycocalyx in the mouse small intestine occurs at the critical suckling-weaning transition. The enterocytic glycocalyx extends 1 µm into the intestinal lumen and prevents the gut bacteria from directly attaching to the enterocytes. To date, the mechanism behind apical targeting of MUC17 to the brush border remains unknown. Here, we show that the actin-based motor proteins MYO1B and MYO5B, and the sorting nexin SNX27 regulate the intracellular trafficking of MUC17 in enterocytes. We demonstrate that MUC17 turnover at the brush border is slow and controlled by MYO1B and SNX27. Furthermore, we report that MYO1B regulates MUC17 protein levels in enterocytes, whereas MYO5B specifically governs MUC17 levels at the brush border. Together, our results extend our understanding of the intracellular trafficking of membrane mucins and provide mechanistic insights into how defective trafficking pathways render enterocytes sensitive to bacterial invasion.

6.
bioRxiv ; 2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36747680

RESUMO

Microvillus Inclusion Disease (MVID), caused by loss-of-function mutations in the motor protein Myosin Vb (MYO5B), is a severe infantile disease characterized by diarrhea, malabsorption, and acid-base instability, requiring intensive parenteral support for nutritional and fluid management. Human patient-derived enteroids represent a model for investigation of monogenic epithelial disorders but are a rare resource from MVID patients. We developed human enteroids with different loss-of function MYO5B variants and showed that they recapitulated the structural changes found in native MVID enterocytes. Multiplex Immunofluorescence imaging of patient duodenal tissues revealed patient-specific changes in localization of brush border transporters. Functional analysis of electrolyte transport revealed profound loss of Na + /H + exchange (NHE) activity in MVID patient enteroids with near-normal chloride secretion. The chloride channel-blocking anti-diarrheal drug, Crofelemer, dose-dependently inhibited agonist-mediated fluid secretion. MVID enteroids exhibited altered differentiation and maturation versus healthy enteroids. Inhibition of Notch signaling with the γ-secretase inhibitor, DAPT, recovered apical brush border structure and functional Na + /H + exchange activity in MVID enteroids. Transcriptomic analysis revealed potential pathways involved in the rescue of MVID cells including serum- and glucocorticoid-induced protein kinase 2 (SGK2), and NHE regulatory factor 3 (NHERF3). These results demonstrate the utility of patient-derived enteroids for developing therapeutic approaches to MVID. Conflict-of-interest statement: The authors have declared that no conflict of interest exists.

8.
Am J Physiol Gastrointest Liver Physiol ; 323(5): G501-G510, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36218265

RESUMO

Intestinal enterocytes have an elaborate apical membrane of actin-rich protrusions known as microvilli. The organization of microvilli is orchestrated by the intermicrovillar adhesion complex (IMAC), which connects the distal tips of adjacent microvilli. The IMAC is composed of CDHR2 and CDHR5 as well as the scaffolding proteins USH1C, ANKS4B, and Myosin 7b (MYO7B). To create an IMAC, cells must transport the proteins to the apical membrane. Myosin 5b (MYO5B) is a molecular motor that traffics ion transporters to the apical membrane of enterocytes, and we hypothesized that MYO5B may also be responsible for the localization of IMAC proteins. To address this question, we used two different mouse models: 1) neonatal germline MYO5B knockout (MYO5B KO) mice and 2) adult intestinal-specific tamoxifen-inducible VillinCreERT2;MYO5Bflox/flox mice. In control mice, immunostaining revealed that CDHR2, CDHR5, USH1C, and MYO7B were highly enriched at the tips of the microvilli. In contrast, neonatal germline and adult MYO5B-deficient mice showed loss of apical CDHR2, CDHR5, and MYO7B in the brush border and accumulation in a subapical compartment. Colocalization analysis revealed decreased Mander's coefficients in adult inducible MYO5B-deficient mice compared with control mice for CDHR2, CDHR5, USH1C, and MYO7B. Scanning electron microscopy images further demonstrated aberrant microvilli packing in adult inducible MYO5B-deficient mouse small intestine. These data indicate that MYO5B is responsible for the delivery of IMAC components to the apical membrane.NEW & NOTEWORTHY The intestinal epithelium absorbs nutrients and water through an elaborate apical membrane of highly organized microvilli. Microvilli organization is regulated by the intermicrovillar adhesion complexes, which create links between neighboring microvilli and control microvilli packing and density. In this study, we report a new trafficking partner of the IMAC, Myosin 5b. Loss of Myosin 5b results in a disorganized brush border and failure of IMAC proteins to reach the distal tips of microvilli.


Assuntos
Enterócitos , Microvilosidades , Miosina Tipo V , Animais , Camundongos , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Enterócitos/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Microvilosidades/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo
9.
Am J Physiol Gastrointest Liver Physiol ; 323(3): G239-G254, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35819177

RESUMO

The small GTPase, Rab11a, regulates vesicle trafficking and cell polarity in epithelial cells through interaction with Rab11 family-interacting proteins (Rab11-FIPs). We hypothesized that deficiency of Rab11-FIP1 would affect mucosal integrity in the intestine. Global Rab11FIP1 knockout (KO) mice were generated by deletion of the second exon. Pathology of intestinal tissues was analyzed by immunostaining of colonic sections and RNA-sequencing of isolated colonic epithelial cells. A low concentration of dextran sodium sulfate (DSS, 2%) was added to drinking water for 5 days, and injury score was compared between Rab11FIP1 KO, Rab11FIP2 KO, and heterozygous littermates. Rab11FIP1 KO mice showed normal fertility and body weight gain. More frequent lymphoid patches and infiltration of macrophages and neutrophils were identified in Rab11FIP1 KO mice before the development of rectal prolapse compared with control mice. The population of trefoil factor 3 (TFF3)-positive goblet cells was significantly lower, and the ratio of proliferative to nonproliferative cells was higher in Rab11FIP1 KO colons. Transcription signatures indicated that Rab11FIP1 deletion downregulated genes that mediate stress tolerance response, whereas genes mediating the response to infection were significantly upregulated, consistent with the inflammatory responses in the steady state. Lack of Rab11FIP1 also resulted in abnormal accumulation of subapical vesicles in colonocytes and the internalization of transmembrane mucin, MUC13, with Rab14. After DSS treatment, Rab11FIP1 KO mice showed greater body weight loss and more severe mucosal damage than those in heterozygous littermates. These findings suggest that Rab11FIP1 is important for cytoprotection mechanisms and for the maintenance of colonic mucosal integrity.NEW & NOTEWORTHY Although Rab11FIP1 is important in membrane trafficking in epithelial cells, the gastrointestinal phenotype of Rab11FIP1 knockout (KO) mice had never been reported. This study demonstrated that Rab11FIP1 loss induces mistrafficking of Rab14 and MUC13 and decreases in colonic goblet cells, resulting in impaired mucosal integrity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Colite , Proteínas de Membrana , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Colite/metabolismo , Colo/metabolismo , Sulfato de Dextrana , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Membrana/genética , Camundongos Knockout
10.
Cell Mol Gastroenterol Hepatol ; 14(3): 553-565, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35660026

RESUMO

Microvillus inclusion disease (MVID) is a congenital diarrheal disorder resulting in life-threatening secretory diarrhea in newborns. Inactivating and nonsense mutations in myosin Vb (MYO5B) have been identified in MVID patients. Work using patient tissues, cell lines, mice, and pigs has led to critical insights into the pathology of MVID and a better understanding of both apical trafficking in intestinal enterocytes and intestinal stem cell differentiation. These studies have demonstrated that loss of MYO5B or inactivating mutations lead to loss of apical sodium and water transporters, without loss of apical CFTR, accounting for the major pathology of the disease. In addition, loss of MYO5B expression induces the formation of microvillus inclusions through apical bulk endocytosis that utilizes dynamin and PACSIN2 and recruits tight junction proteins to the sites of bulk endosome formation. Importantly, formation of microvillus inclusions is not required for the induction of diarrhea. Recent investigations have demonstrated that administration of lysophosphatidic acid (LPA) can partially reestablish apical ion transporters in enterocytes of MYO5B KO mice. In addition, further studies have shown that MYO5B loss induces an imbalance in Wnt/Notch signaling pathways that can lead to alterations in enterocyte maturation and tuft cell lineage differentiation. Inhibition of Notch signaling leads to improvements in those cell differentiation deficits. These studies demonstrate that directed strategies through LPA receptor activation and Notch inhibition can bypass the inhibitory effects of MYO5B loss. Thus, effective strategies may be successful in MVID patients and other congenital diarrhea syndromes to reestablish proper apical membrane absorption of sodium and water in enterocytes and ameliorate life-threatening congenital diarrhea.


Assuntos
Miosina Tipo V , Animais , Diarreia/metabolismo , Humanos , Síndromes de Malabsorção , Microvilosidades/metabolismo , Microvilosidades/patologia , Mucolipidoses , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Sódio/metabolismo , Água/metabolismo
11.
Nutrients ; 13(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34835968

RESUMO

In addition to the small intestine's well-known function of nutrient absorption, the small intestine also plays a major role in nutrient sensing. Similar to taste sensors seen on the tongue, GPCR-coupled nutrient sensors are expressed throughout the intestinal epithelium and respond to nutrients found in the lumen. These taste receptors respond to specific ligands, such as digested carbohydrates, fats, and proteins. The activation of nutrient sensors in the intestine allows for the induction of signaling pathways needed for the digestive system to process an influx of nutrients. Such processes include those related to glucose homeostasis and satiety. Defects in intestinal nutrient sensing have been linked to a variety of metabolic disorders, such as type 2 diabetes and obesity. Here, we review recent updates in the mechanisms related to intestinal nutrient sensors, particularly in enteroendocrine cells, and their pathological roles in disease. Additionally, we highlight the emerging nutrient sensing role of tuft cells and recent work using enteroids as a sensory organ model.


Assuntos
Células Enteroendócrinas/citologia , Intestino Delgado/citologia , Animais , Biomarcadores/metabolismo , Humanos , Nutrientes , Receptores de Superfície Celular/metabolismo , Paladar
12.
JCI Insight ; 6(16)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34197342

RESUMO

Functional loss of myosin Vb (MYO5B) induces a variety of deficits in intestinal epithelial cell function and causes a congenital diarrheal disorder, microvillus inclusion disease (MVID). The impact of MYO5B loss on differentiated cell lineage choice has not been investigated. We quantified the populations of differentiated epithelial cells in tamoxifen-induced, epithelial cell-specific MYO5B-knockout (VilCreERT2 Myo5bfl/fl) mice utilizing digital image analysis. Consistent with our RNA-sequencing data, MYO5B loss induced a reduction in tuft cells in vivo and in organoid cultures. Paneth cells were significantly increased by MYO5B deficiency along with expansion of the progenitor cell zone. We further investigated the effect of lysophosphatidic acid (LPA) signaling on epithelial cell differentiation. Intraperitoneal LPA significantly increased tuft cell populations in both control and MYO5B-knockout mice. Transcripts for Wnt ligands were significantly downregulated by MYO5B loss in intestinal epithelial cells, whereas Notch signaling molecules were unchanged. Additionally, treatment with the Notch inhibitor dibenzazepine (DBZ) restored the populations of secretory cells, suggesting that the Notch pathway is maintained in MYO5B-deficient intestine. MYO5B loss likely impairs progenitor cell differentiation in the small intestine in vivo and in vitro, partially mediated by Wnt/Notch imbalance. Notch inhibition and/or LPA treatment may represent an effective therapeutic approach for treatment of MVID.


Assuntos
Síndromes de Malabsorção/genética , Microvilosidades/patologia , Mucolipidoses/genética , Miosina Tipo V/deficiência , Receptores Notch/metabolismo , Via de Sinalização Wnt/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Dibenzazepinas/farmacologia , Modelos Animais de Doenças , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Jejuno/citologia , Jejuno/efeitos dos fármacos , Jejuno/patologia , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/uso terapêutico , Síndromes de Malabsorção/tratamento farmacológico , Síndromes de Malabsorção/patologia , Camundongos , Camundongos Knockout , Microvilosidades/genética , Mucolipidoses/tratamento farmacológico , Mucolipidoses/patologia , Miosina Tipo V/genética , Organoides , Cultura Primária de Células , Receptores Notch/antagonistas & inibidores , Células-Tronco/fisiologia , Via de Sinalização Wnt/efeitos dos fármacos
13.
Am J Physiol Gastrointest Liver Physiol ; 320(6): G936-G957, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33759564

RESUMO

Defective barrier function is a predisposing factor in inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Although TGFß signaling defects have been associated with IBD and CAC, few studies have examined the relationship between TGFß and intestinal barrier function. Here, we examine the role of TGFß signaling via SMAD4 in modulation of colon barrier function. The Smad4 gene was conditionally deleted in the intestines of adult mice and intestinal permeability assessed using an in vivo 4 kDa FITC-Dextran (FD4) permeability assay. Mouse colon was isolated for gene expression (RNA-sequencing), Western blot, and immunofluorescence analysis. In vitro colon organoid culture was utilized to assess junction-related gene expression by qPCR and transepithelial resistance (TER). In silico analyses of human IBD and colon cancer databases were performed. Mice lacking intestinal expression of Smad4 demonstrate increased colonic permeability to FD4 without gross mucosal damage. mRNA/protein expression analyses demonstrate significant increases in Cldn2/Claudin 2 and Cldn8/Claudin 8, and decreases in Cldn3, Cldn4, and Cldn7/Claudin 7 with intestinal SMAD4 loss in vivo without changes in Claudin protein localization. TGFß1/BMP2 treatment of polarized SMAD4+ colonoids increases TER. Cldn2, Cldn4, Cldn7, and Cldn8 are regulated by canonical TGFß signaling, and TGFß-dependent regulation of these genes is dependent on nascent RNA transcription (Cldn2, Cldn4, Cldn8) but not nascent protein translation (Cldn4, Cldn8). Human IBD/colon cancer specimens demonstrate decreased SMAD4, CLDN4, CLDN7, and CLDN8 and increased CLDN2 compared with healthy controls. Canonical TGFß signaling modulates the expression of tight junction proteins and barrier function in mouse colon.NEW & NOTEWORTHY We demonstrate that canonical TGFß family signaling modulates the expression of critical tight junction proteins in colon epithelial cells, and that expression of these tight junction proteins is associated with maintenance of colon epithelial barrier function in mice.


Assuntos
Colo/metabolismo , Células Epiteliais/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Junções Íntimas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteínas de Junções Íntimas/genética , Junções Íntimas/metabolismo
14.
Cell Mol Gastroenterol Hepatol ; 12(1): 59-80, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33548596

RESUMO

BACKGROUND & AIMS: The molecular motor, Myosin Vb (MYO5B), is well documented for its role in trafficking cargo to the apical membrane of epithelial cells. Despite its involvement in regulating apical proteins, the role of MYO5B in cell polarity is less clear. Inactivating mutations in MYO5B result in microvillus inclusion disease (MVID), a disorder characterized by loss of key apical transporters and the presence of intracellular inclusions in enterocytes. We previously identified that inclusions in Myo5b knockout (KO) mice form from invagination of the apical brush border via apical bulk endocytosis. Herein, we sought to elucidate the role of polarity complexes and tight junction proteins during the formation of inclusions. METHODS: Intestinal tissue from neonatal control and Myo5b KO littermates was analyzed by immunofluorescence to determine the localization of polarity complexes and tight junction proteins. RESULTS: Proteins that make up the apical polarity complexes-Crumbs3 and Pars complexes-were associated with inclusions in Myo5b KO mice. In addition, tight junction proteins were observed to be concentrated over inclusions that were present at the apical membrane of Myo5b-deficient enterocytes in vivo and in vitro. Our mouse findings are complemented by immunostaining in a large animal swine model of MVID genetically engineered to express a human MVID-associated mutation that shows an accumulation of Claudin-2 over forming inclusions. The findings from our swine model of MVID suggest that a similar mechanism of tight junction accumulation occurs in patients with MVID. CONCLUSIONS: These data show that apical bulk endocytosis involves the altered localization of apical polarity proteins and tight junction proteins after loss of Myo5b.


Assuntos
Enterócitos/metabolismo , Miosina Tipo V/metabolismo , Proteínas de Junções Íntimas/metabolismo , Animais , Endocitose , Absorção Intestinal , Camundongos , Camundongos Knockout , Miosina Tipo V/deficiência , Proteínas de Junções Íntimas/genética
15.
Gastroenterology ; 159(4): 1390-1405.e20, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32534933

RESUMO

BACKGROUND & AIM: Myosin VB (MYO5B) is an essential trafficking protein for membrane recycling in gastrointestinal epithelial cells. The inactivating mutations of MYO5B cause the congenital diarrheal disease, microvillus inclusion disease (MVID). MYO5B deficiency in mice causes mislocalization of SGLT1 and NHE3, but retained apical function of CFTR, resulting in malabsorption and secretory diarrhea. Activation of lysophosphatidic acid (LPA) receptors can improve diarrhea, but the effect of LPA on MVID symptoms is unclear. We investigated whether LPA administration can reduce the epithelial deficits in MYO5B-knockout mice. METHODS: Studies were conducted with tamoxifen-induced, intestine-specific knockout of MYO5B (VilCreERT2;Myo5bflox/flox) and littermate controls. Mice were given LPA, an LPAR2 agonist (GRI977143), or vehicle for 4 days after a single injection of tamoxifen. Apical SGLT1 and CFTR activities were measured in Üssing chambers. Intestinal tissues were collected, and localization of membrane transporters was evaluated by immunofluorescence analysis in tissue sections and enteroids. RNA sequencing and enrichment analysis were performed with isolated jejunal epithelial cells. RESULTS: Daily administration of LPA reduced villus blunting, frequency of multivesicular bodies, and levels of cathepsins in intestinal tissues of MYO5B-knockout mice compared with vehicle administration. LPA partially restored the brush border height and the localization of SGLT1 and NHE3 in small intestine of MYO5B-knockout mice and enteroids. The SGLT1-dependent short-circuit current was increased and abnormal CFTR activities were decreased in jejunum from MYO5B-knockout mice given LPA compared with vehicle. CONCLUSIONS: LPA may regulate a MYO5B-independent trafficking mechanism and brush border maturation, and therefore be developed for treatment of MVID.


Assuntos
Lisofosfolipídeos/uso terapêutico , Síndromes de Malabsorção/tratamento farmacológico , Síndromes de Malabsorção/patologia , Microvilosidades/patologia , Mucolipidoses/tratamento farmacológico , Mucolipidoses/patologia , Miosina Tipo V/deficiência , Transportador 1 de Glucose-Sódio/metabolismo , Animais , Modelos Animais de Doenças , Enterócitos/patologia , Síndromes de Malabsorção/etiologia , Camundongos , Camundongos Knockout , Mucolipidoses/etiologia
16.
Biomed Res ; 41(2): 113-118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32307399

RESUMO

Clinical interest into the function of tuft cells in human intestine has increased in recent years. However, no quantitative study has examined intestinal tuft cells in pathological specimens from patients. This study quantified tuft cell density by using a recently identified marker, specific for tyrosine phosphorylation (pY1798) of girdin (also known as CCDC88A or GIV) in the duodenum of pediatric patients. Deidentified sections with pathological diagnosis of acute duodenitis, ulcer, or celiac disease, and age-matched normal control were analyzed under double-blind conditions. Immunostaining for pY1798-girdin demonstrated the distinct shape of tuft cells with and filopodia-like basolateral membrane structure and a small apical area, which densely expressed gamma-actin. As compared to normal tissues, the specimens diagnosed as celiac disease and duodenal ulcer had significantly fewer tuft cell numbers. In contrast, acute duodenitis showed varied population of tuft cells. The mucosa with severe inflammation showed lower tuft cell numbers than the specimens with none to mild inflammation. These results suggest that loss of tuft cells may be involved in prolonged inflammation in the duodenal mucosa and disrupted mucosal integrity. pY1798-girdin and gamma-actin are useful markers for investigating the distribution and morphologies of human intestinal tuft cells under healthy and pathological conditions.


Assuntos
Actinas/metabolismo , Doença Celíaca , Úlcera Duodenal , Duodenite , Duodeno , Mucosa Intestinal , Proteínas dos Microfilamentos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Doença Aguda , Adolescente , Biomarcadores/metabolismo , Doença Celíaca/metabolismo , Doença Celíaca/patologia , Criança , Doença Crônica , Úlcera Duodenal/metabolismo , Úlcera Duodenal/patologia , Duodenite/metabolismo , Duodenite/patologia , Duodeno/metabolismo , Duodeno/patologia , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Fosforilação
17.
Gastroenterology ; 158(8): 2236-2249.e9, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32112796

RESUMO

BACKGROUND & AIMS: Microvillus inclusion disease (MVID) is caused by inactivating mutations in the myosin VB gene (MYO5B). MVID is a complex disorder characterized by chronic, watery, life-threatening diarrhea that usually begins in the first hours to days of life. We developed a large animal model of MVID to better understand its pathophysiology. METHODS: Pigs were cloned by transfer of chromatin from swine primary fetal fibroblasts, which were edited with TALENs and single-strand oligonucleotide to introduce a P663-L663 substitution in the endogenous swine MYO5B (corresponding to the P660L mutation in human MYO5B, associated with MVID) to fertilized oocytes. We analyzed duodenal tissues from patients with MVID (with the MYO5B P660L mutation) and without (controls), and from pigs using immunohistochemistry. Enteroids were generated from pigs with MYO5B(P663L) and without the substitution (control pigs). RESULTS: Duodenal tissues from patients with MVID lacked MYO5B at the base of the apical membrane of intestinal cells; instead MYO5B was intracellular. Intestinal tissues and derived enteroids from MYO5B(P663L) piglets had reduced apical levels and diffuse subapical levels of sodium hydrogen exchanger 3 and SGLT1, which regulate transport of sodium, glucose, and water, compared with tissues from control piglets. However, intestinal tissues and derived enteroids from MYO5B(P663L) piglets maintained CFTR on apical membranes, like tissues from control pigs. Liver tissues from MYO5B(P663L) piglets had alterations in bile salt export pump, a transporter that facilitates bile flow, which is normally expressed in the bile canaliculi in the liver. CONCLUSIONS: We developed a large animal model of MVID that has many features of the human disease. Studies of this model could provide information about the functions of MYO5B and MVID pathogenesis, and might lead to new treatments.


Assuntos
Duodeno/metabolismo , Edição de Genes , Mucosa Intestinal/metabolismo , Síndromes de Malabsorção/genética , Microvilosidades/patologia , Mucolipidoses/genética , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Transportador 1 de Glucose-Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Animais , Animais Geneticamente Modificados , Células Cultivadas , Técnicas de Cocultura , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Duodeno/patologia , Predisposição Genética para Doença , Humanos , Mucosa Intestinal/patologia , Síndromes de Malabsorção/metabolismo , Síndromes de Malabsorção/patologia , Microvilosidades/genética , Microvilosidades/metabolismo , Mucolipidoses/metabolismo , Mucolipidoses/patologia , Mutação de Sentido Incorreto , Fenótipo , Sódio/metabolismo , Transportador 1 de Glucose-Sódio/genética , Trocador 3 de Sódio-Hidrogênio/genética , Sus scrofa
18.
Dig Dis Sci ; 65(1): 119-131, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31515722

RESUMO

BACKGROUND: Peptic ulcers recur, suggesting that ulcer healing may leave tissue predisposed to subsequent damage. In mice, we have identified that the regenerated epithelium found after ulcer healing will remain abnormal for months after healing. AIM: To determine whether healed gastric mucosa has altered epithelial function, as measured by electrophysiologic parameters. METHOD: Ulcers were induced in mouse gastric corpus by serosal local application of acetic acid. Thirty days or 8 months after ulcer induction, tissue was mounted in an Ussing chamber. Transepithelial electrophysiologic parameters (short-circuit current, Isc. resistance, R) were compared between the regenerated healed ulcer region and the non-ulcerated contralateral region, in response to luminal hyperosmolar NaCl challenge (0.5 M). RESULTS: In unperturbed stomach, luminal application of hyperosmolar NaCl transiently dropped Isc followed by gradual recovery over 2 h. Compared to the starting baseline Isc, percent Isc recovery was reduced in 30-day healing mucosa, but not at 8 months. Prior to NaCl challenge, a lower baseline Isc was observed in trefoil factor 2 (TFF2) knockout (KO) versus wild type (WT), with no Isc recovery in either non-ulcerated or healing mucosa of KO. Inhibiting Na/H exchanger (NHE) transport in WT mucosa inhibited Isc recovery in response to luminal challenge. NHE2-KO baseline Isc was reduced versus NHE2-WT. In murine gastric organoids, NHE inhibition slowed recovery of intracellular pH and delayed the repair of photic induced damage. CONCLUSION: Healing gastric mucosa has deficient electrophysiological recovery in response to hypertonic NaCl. TFF2 and NHE2 contribute to Isc regulation, and the recovery and healing of transepithelial function.


Assuntos
Células Epiteliais/metabolismo , Mucosa Gástrica/metabolismo , Cloreto de Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/deficiência , Úlcera Gástrica/metabolismo , Cicatrização , Ácido Acético , Animais , Modelos Animais de Doenças , Impedância Elétrica , Células Epiteliais/patologia , Feminino , Mucosa Gástrica/patologia , Concentração de Íons de Hidrogênio , Soluções Hipertônicas , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reepitelização , Trocadores de Sódio-Hidrogênio/genética , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/genética , Úlcera Gástrica/patologia , Fatores de Tempo , Fator Trefoil-2/deficiência , Fator Trefoil-2/genética
19.
Physiol Rev ; 100(2): 573-602, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31670611

RESUMO

Parietal cells are responsible for gastric acid secretion, which aids in the digestion of food, absorption of minerals, and control of harmful bacteria. However, a fine balance of activators and inhibitors of parietal cell-mediated acid secretion is required to ensure proper digestion of food, while preventing damage to the gastric and duodenal mucosa. As a result, parietal cell secretion is highly regulated through numerous mechanisms including the vagus nerve, gastrin, histamine, ghrelin, somatostatin, glucagon-like peptide 1, and other agonists and antagonists. The tight regulation of parietal cells ensures the proper secretion of HCl. The H+-K+-ATPase enzyme expressed in parietal cells regulates the exchange of cytoplasmic H+ for extracellular K+. The H+ secreted into the gastric lumen by the H+-K+-ATPase combines with luminal Cl- to form gastric acid, HCl. Inhibition of the H+-K+-ATPase is the most efficacious method of preventing harmful gastric acid secretion. Proton pump inhibitors and potassium competitive acid blockers are widely used therapeutically to inhibit acid secretion. Stimulated delivery of the H+-K+-ATPase to the parietal cell apical surface requires the fusion of intracellular tubulovesicles with the overlying secretory canaliculus, a process that represents the most prominent example of apical membrane recycling. In addition to their unique ability to secrete gastric acid, parietal cells also play an important role in gastric mucosal homeostasis through the secretion of multiple growth factor molecules. The gastric parietal cell therefore plays multiple roles in gastric secretion and protection as well as coordination of physiological repair.


Assuntos
Ácido Gástrico/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Células Parietais Gástricas/metabolismo , Animais , Forma Celular , Homeostase , Humanos , Células Parietais Gástricas/efeitos dos fármacos , Potássio/metabolismo , Inibidores da Bomba de Prótons/farmacologia , Via Secretória , Transdução de Sinais
20.
Biomed Res ; 40(6): 225-233, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31839666

RESUMO

The effect of non-viable lactic acid bacteria on gastrointestinal physiology and dysfunction remains still unclear. Previous clinical trials have reported that Lactobacillus gasseri CP2305 (CP2305) exerts stress-relieving and anti-flatulent effects regardless of cell viability. In this study, we investigated the effect of viable and non-viable CP2305 cells on electrical field stimulation (EFS)-evoked increases in short-circuit current (Isc) using the Ussing chamber technique. In mucosal-submucosal preparations of rats, both viable and non-viable CP2305 cells significantly and acutely inhibited the EFS-evoked increases in Isc in the middle and distal colon and rectum but not in proximal colon. The inhibition of EFS-evoked Isc differed from strain to strain. Peripheral injection of corticotropin releasing factor (CRF) is known to mimic diarrhea symptoms in rats. Therefore, we examined the chronic effects of CP2305 cells on CRF-induced diarrhea in the rat model. Treatment with viable and non-viable CP2305 cells significantly improved CRF-induced diarrhea in the rat model. However, the treatment did not affect the fecal pellet output. These findings suggest that CP2305 has an important role in gastrointestinal physiology and dysfunction.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Diarreia/metabolismo , Diarreia/microbiologia , Infecções por Bactérias Gram-Positivas/metabolismo , Infecções por Bactérias Gram-Positivas/microbiologia , Transporte de Íons , Lactobacillus gasseri/fisiologia , Animais , Colo/metabolismo , Colo/microbiologia , Modelos Animais de Doenças , Masculino , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...